Unit 1 (Chapters 11 & 12)

Solve the following problems, show your work.

1. The speed of a jogger can be expressed by \(v = 7.5(1 - 0.04x)^{0.3} \), where \(v \) and \(x \) are expressed in mph and miles. Knowing that \(x = 0 \) at \(t = 0 \), determine the runner's acceleration at 6 mi.

2. The pitcher in a softball game throws a ball with an initial velocity \(\vec{v}_0 = 72 \) kph \(\angle \alpha \). If the height of the ball at point \(B \) is 0.68 m, determine the angle \(\alpha \).
3. During a hammer thrower's practice swing, the 7.1-kg head A of the hammer revolves at a constant speed \(v \) in the horizontal circle. If \(\rho = 0.93 \, m \) and \(\theta = 60^\circ \), determine the speed of the hammer head and the tension in the cable.

4. Rod \(OA \) oscillates about \(O \) in a horizontal plane. The motion of the 5-lb collar \(B \) is defined by \(r = \frac{10}{t+4} \) and \(\theta = \frac{2}{\pi} \sin \pi t \) where \(r \) and \(t \) are expressed in feet and seconds respectively. \(\theta \) is expressed in radians. Determine the radial and transverse components of the force exerted on the collar at \(t = 6 \, s \).